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Abstract. We analyse Monte Carlo data for the energy and specific heat at and close to the
critical point of the 3D cubic Ising model. From the finite-size scaling of the energyE and the
specific heatC at criticality we obtain the estimateν = 0.6308(10). Furthermore, one obtains
precise estimates for the ‘backgrounds’ (nonsingular parts)Ens andCns. Fitting solely off-critical
energy estimates to a scaling law, we find, depending on the choice of the reduced temperature,
eitherA+/A− = 0.550(12) andα = 0.1115(37), or A+/A− = 0.567(16) andα = 0.1047(48).
Including information from the data atTc, we obtain the estimateA+/A− = 0.560(10). We
also determine the universal combinationfsξ

3 in both phases.

1. Introduction

The universal amplitude ratioA+/A− of the 3D Ising universality class (for a precise
definition see equation (6) below) still seems subject to some uncertainty. For a general
discussion of the difficulties one encounters when trying to estimateA+/A− from high and
low temperature expansions see [1]. A compilation of some results in the literature will be
given in section 4. For a general introduction to universal critical-point amplitudes see, e.g.
[2].

Here we present a calculation ofA+/A− based on Monte Carlo (MC) data for the energy
of the 3D Ising model. Furthermore, we obtain fairly precise estimates of other quantities,
such as the exponentsν andα, nonsingular parts of energy and specific heat, and of the
universal combinationfsξ

3 on both sides of the transition.
Consider the 3D Ising model on the simple cubic lattice of sizeL×L×L, with periodic

boundary conditions. The Hamiltonian is

H = −
∑
〈x,y〉

sxsy sx = ±1. (1)

The sum in equation (1) is over all (unordered) nearest-neighbour pairs of sites in the lattice.
The partition function is

Z =
∑
{s}

exp(−βH). (2)
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Here, the summation is over all possible configurations of the Ising spins. The pair
interaction is normalized such thatβ = 1/(kBT ), wherekB denotes Boltzmann’s constant,
andT is the temperature.

At a critical couplingβc = 0.221 6544(6) [3] the model undergoes a second-order phase
transition. Forβ > βc, the system shows spontaneous breaking of reflection symmetry.

The free energy density (free energy per link) is defined by

f = − 1

3L3
lnZ. (3)

We define the energy (per link) as the derivative off with respect toβ,

E = − d

dβ
f = − 1

3L3
〈H 〉. (4)

The specific heat is defined as the derivative ofE with respect toβ,

C = d

dβ
E = 1

3L3
(〈H 2〉 − 〈H 〉2). (5)

Note that choosing other definitions, such as putting a minus sign in equation (4) or
substituting a d/dT instead of the d/dβ in equation (5) leads to trivial factors and/or signs
in the definitions and results to be stated below.

The specific heat is singular at the critical point. Close toβc it is expected to behave
like

C ' Cns+ Cs (6)

whereCns is an analytic function ofβ at βc. The singular part is

Cs ' A±|t |−α (7)

where

t = 1− β

βc
(8)

is the reduced temperature.A+ andA− denote the amplitudes of the singular part in the
symmetric (t > 0) and broken (t < 0) phase, respectively.α is the specific heat exponent.
The singularity of the specific heat implies a nonanalytic behaviour of the energyE and the
free energy densityf . Some details will be given in section 2.

2. Scaling and finite-size scaling

For a general introduction to finite-size scaling theory, see e.g. [4]. In order to discuss
the nonanalytic behaviour of the free energy density it is useful to split it into an analytic
(nonsingular) and a singular part,

f = fns+ fs. (9)

Renormalization group arguments lead to the following finite-size scaling ansatz for the
singular part of the free energy density for lattices with periodic boundary conditions [5],

fsξ
d ' g(ξ/L) (10)

where fs is taken in the finite volume, whileξ is the correlation length defined in the
thermodynamic limit.g(ξ/L) is a universal function. In the following we discuss the two
extremal cases of the thermodynamic limit and the finite-size scaling exactly at the critical
point.
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The thermodynamic limit is characterized byξ/L = 0. Inserting the scaling ansatz
ξ ∼ t−ν into equation (10) forξ/L = 0 we obtain

fs ∼ tdν . (11)

By differentiation with respect toβ we arrive at

Es ∼ tdν−1 (12)

and

Cs ∼ tdν−2. (13)

The last equation implies the so-called hyperscaling relationα = 2− dν.
In order to discuss finite-size scaling at the critical point it is useful to reparametrize

equation (10) as

fsL
d ' h(L/ξ) (14)

with h(L/ξ) = (L/ξ)dg(ξ/L). Inserting the scaling lawξ ∼ t−ν we obtain

fs ' L−d h̃(L1/ν t) (15)

and, by differentiation with respect toβ,

Es ∼ L−d+1/ν h̃′(L1/ν t) (16)

and

Cs ∼ L−d+2/ν h̃′′(L1/ν t). (17)

For the critical temperaturet = 0 this means

Es ∼ L−d+1/ν (18)

and

Cs ∼ L−d+2/ν . (19)

In our numerical study we approximated the nonsingular part of the free energy density by
its Taylor expansion, truncated at second order,

fns' Fns− Ens(β − βc)− 1
2Cns(β − βc)2 (20)

whereFns, Ens andCns are the nonsingular parts of the free energy density, the energy
density and the specific heat at the critical point, respectively.

3. MC simulations

3.1. Simulations atβc

We simulated the model atβc = 0.221 6544 on lattices of sizeL = 12 up toL = 112.
For the simulation we employed the single-cluster algorithm. The updating between two
measurements consisted of a number of clusters, ranging between 5 and 50, and a single
Metropolis sweep. The total number of measurements was several million for the smaller
lattice and some hundred thousands for the larger systems.

We measured the energyE, the specific heatC and the derivative ofC with respect to
the inverse temperatureβ. Our results forE andC are summarized in table 1.

We fitted our data for the energy and the specific heat according to the ansatz

E = Ens+ constantEL
−d+1/ν (21)
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Table 1. Results for the energyE and the the specific heatC at βc = 0.221 6544 for various
lattice sizesL.

L E C

12 0.352 212(10) 11.0572(24)
16 0.344 859(16) 12.2103(58)
20 0.340 931(7) 13.1588(47)
24 0.338 489(12) 13.9138(95)
28 0.336 873(6) 14.5920(55)
32 0.335 721(6) 15.1921(74)
36 0.334 882(6) 15.7199(84)
40 0.334 233(7) 16.222(19)
44 0.333 735(6) 16.652(11)
48 0.333 302(10) 17.075(25)
56 0.332 701(8) 17.800(21)
64 0.332 286(9) 18.483(30)
72 0.331 954(9) 19.059(41)
80 0.331 720(7) 19.617(32)
96 0.331 365(8) 20.517(65)

112 0.331 145(8) 21.439(80)

Table 2. Results of fits of the energyE and the the specific heatC at βc = 0.221 6544.
The upper part gives results from energy data only, the following three rows state results from
specific heat data only, while the lower part refers to fits where both sets of data were combined.
Only data of simulations with lattice size greater than or equal toLmin were used for the fits.
X denotesχ2 per degree of freedom.

Data Lmin X ν ConstantE Ens ConstantC Cns

Energy 12 1.04 0.6280(5) 0.7276(25) 0.330 190(7)
data 16 1.13 0.6282(10) 0.729(5) 0.330 192(9)
only 20 0.86 0.6296(12) 0.737(7) 0.330 200(9)

Specific 12 1.42 0.6380(7) 20.9(8) −18.2(9)
heat data 16 1.35 0.6365(13) 19.3(1.2)−16.4(1.4)
only 20 0.45 0.6329(16) 16.1(1.3)−12.9(1.4)

Both 12 5.6 0.6316(4) 0.7440(20) 0.330 229(5) 15.32(30)−12.13(33)
data 16 2.25 0.6315(8) 0.7460(40) 0.330 218(7) 15.15(54)−11.83(61)
combined 20 0.75 0.6308(10) 0.7431(52) 0.330 209(8) 14.58(66)−11.12(76)

and

C = Cns+ constantCL
−d+2/ν (22)

that are motivated by equations (18) and (19), respectively. The results are summarized
in table 2. Theχ2 per degree of freedom becomes smaller than one if only lattices with
L > 20 are included in the fit.

One observes that the result forν obtained from the energy is smaller than that from
fitting the specific heat. However, when discarding data from smallL the estimate ofν
from the energy increases, while that from the specific heat decreases.

Next we fitted the data for the energy and the specific heat simultaneously. We checked
that the cross-correlation of the two quantities is small compared with the geometric mean
of the variances of the two quantities. Therefore it is justified to treat, for simplicity, the
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Table 3. A collection of results for the exponentsν andα obtained with various methods. The
abbreviations for the methods used are explained in the text.

Reference Method ν α

[6] ε-expansion 0.6310(15) 0.1100(45)
[6] 3D, FT 0.6300(15) 0.1100(45)
[9] 3D, FT 0.630
[12] HT, φ4 0.6300(15)
[11] HT 0.101(4)
[13] HT 0.104(4)
[7] MC 0.6301(8)
[8] CAM 0.108(5)
[10] FSS, exact 0.629(2)

data as independent. When all data are included into the fit theχ2 per degree of freedom
becomes unacceptably large. Again discarding theL = 12 andL = 16 data, the fits become
very good. It is interesting to note that the value forν changes only slightly whenL = 12
and 16 are discarded from the fit.

In order to check the dependence of our result on the value of the critical coupling,
we repeated the fit forβ = 0.221 6538 andβ = 0.221 655. The values for the energy and
the specific heat at theseβ-values were obtained from first-order Taylor expansion and the
numerically determined values of the derivatives. Taking into account the error induced by
the uncertainty ofβc we arrive at the final estimatesEns= 0.330 209(14), Cns= −11.1(8)
andν = 0.6308(10) obtained from the combined energy and specific heat fit withL > 20.
Here only statistical errors are given. It is difficult to quantify systematic errors owing to
corrections to scaling. We tried to use an ansatz that includes a leading correction to scaling
term

Es ∼ L−d+1/ν(1+ cL−ω) (23)

with the correction to scaling exponentω = 0.81(5) [3, 6, 9, 12, 7]. It turned out that the
amplitude of the correction to the scaling term was consistent with zero within error bars.
The estimate ofν wasν = 0.631(4) when all data for the energy and the specific heat were
included in the fit.

A discussion of results for critical exponents obtained from various methods can be
found in section 7 of [7]. For the convenience of the reader we summarize some of the
more recent results for the exponentsν andα in table 3. These results were obtained with
ε-expansion, field theoretic methods applied to 3Dφ4 theory (3D, FT), high-temperature
expansions (HT) of the 3D Ising model and theφ4 theory, the coherent-anomaly method
applied to the 3D Ising model (CAM) and finite-size scaling (FSS) of a 2D Ising Hamiltonian
system which is computed exactly on lattices of size up to 52 (while the time direction is
continuous as well as infinite).

All estimates are nicely consistent among each other except the one obtained by
Guttmann and Enting [11]. Their result forα is by about twice the cited uncertainty
0.004 smaller thanα = 0.110 orν = 0.630 by hyperscaling which is roughly the average
of the other results given.

Since the estimate ofν obtained from the fit without corrections to scaling is in good
agreement with recent results given in the literature, we also regard the estimates forEns

andCns, which will be used in the following, as reliable.
A more detailed account of corrections to scaling is given in sections 5.1 and 5.2 of
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[7]. The data set of [7] contains high statistics runs of small lattices and should hence be
more suitable than our data to detect corrections to scaling.

It is interesting to note that the leading correction to scaling amplitudes,b1 (energy)
andr1 (specific heat) in the notation of [7], are consistent with zero within the error bars.

The final results forEns andCns of [7] are consistent with ours. However, in this case
our statistical errors are considerably smaller. Here we benefit from the larger lattice sizes
available (Lmax= 112 in contrast toLmax= 40 of [7]).

3.2. Simulations atβ 6= βc
Next we simulated the model at temperatures below and above the critical temperature, such
that results for the thermodynamic limit could be obtained. The resulting MC estimates for
E are fitted to

E ' Ens− Cnsβct ∓ A±βc |t |
1−α

1− α (24)

which is obtained by integration of equation (6). For the simulations in the symmetric phase
and for part of the simulations in the broken phase we used the single cluster algorithm
[14] combined with a standard local Metropolis update. A typical mixture was 20 cluster
updates plus a single Metropolis sweep, followed by a measurement of observables. The
total number of measurements was typically of order a few hundred thousand up to two
million. Part of the results for the broken phase were obtained in the course of another
project [15], using a demon program coded in multispin fashion. For details of these
simulations we refer to [15].

Our results forE are displayed in table 4. Theβ-values were chosen in the range
0.218 909–0.224. The corresponding reduced temperature covers the interval from 0.0124
to −0.011. The typical lattice sizes were 96 and 128. We convinced ourselves that we
always reached the thermodynamic limit within the numerical precision. In the table we
marked those values that were discarded because of finite-size effects by an ‘F’. Data that
were excluded because of a too large a distance from criticality are marked with a ‘T’ (see
below).

We then made two types of fits. We first fixedβc andα, and fittedEns, Cns, A+, and
A−. Then we only fixedβc and fitted all the other parameters in equation (24). In both
cases, we used in addition to the reduced temperaturet an alternative definition,

t ′ = βc

β
− 1. (25)

Comparing the fit results from the two definitions should give us an estimate of systematic
effects that stem, e.g. from the inclusion of data that have too large at or the neglection
of subleading terms in equation (24). The results for the fit parameters are summarized in
table 5.

We first started taking all the data of table 4. However, it turned out that in order to
have fits with a reasonable level of confidence, we had to discard the data marked with a
‘T’. The fits with the remaining data (the results of which are quoted in table 5) had aχ2

per degree of freedom of 0.9–1.2.
There is a systematic difference of the fits with the two different definitions of the

reduced temperature. In the case of the fits with fixedα we could further reduce the data
to include only results closer to criticality. This moved the estimates slightly, however, it
did not diminish the systematic difference between thet and t ′ fits. We therefore conclude
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Table 4. MC results for the energy of the 3D off-critical Ising model. A ‘T’ in the last column
means that the corresponding data is not used for the fits because of its too large reduced
temperature. Exclusion of the fits because of finite-size effects is indicated by an ‘F’.

β E L

0.218 9088 0.311 775(5) 96 T
0.219 31 0.313 849(14) 80 T
0.219 7088 0.315 949(6) 96
0.220 2 0.318 742(11) 100
0.220 4 0.319 958(6) 96
0.220 5 0.320 587(9) 128
0.220 5 0.320 592(9) 96
0.220 6 0.321 230(11) 128
0.220 6 0.321 220(8) 96
0.220 7 0.321 887(9) 128
0.220 7 0.321 900(8) 96
0.220 8 0.322 581(9) 128
0.220 8 0.322 593(9) 96
0.220 9 0.323 280(5) 128
0.220 9 0.323 301(8) 96 F
0.221 0 0.323 995(10) 128
0.221 0 0.324 040(9) 96 F

0.222 0 0.340 001(12) 128
0.222 0 0.340 001(34) 96
0.222 1 0.342 368(19) 96
0.222 2 0.344 592(35) 96
0.222 4 0.348 911(35) 96
0.222 6 0.353 134(36) 96
0.222 8 0.357 057(36) 96
0.222 9 0.358 935(47) 64
0.223 0 0.360 972(31) 96
0.223 4 0.368 280(28) 96 T
0.223 6 0.371 725(27) 96 T
0.223 8 0.375 248(27) 96 T
0.224 0 0.378 615(26) 96 T

that in order to cure this problem the most likely correction terms should be added in the
ansatz equation (24). To this end, one would probably need more precise data.

The slight mismatch of the result forEns obtained in this section with the result obtained
from finite-size scaling at the critical point should be attributed to such corrections to scaling
and not to a failure of the theoretical prediction.

Using the results forEns, Cns andν obtained at the critical point one can compute the
scaling amplitude from a single energy value, just by solving equation (24) with respect to
A+ or A−. The results are given in table 6.

The main sources of error in the amplitudesA+ andA− computed this way are induced
by the errors ofCns and ν. However, when taking the ratioA+/A− from amplitudes
computed at about the same distance fromβc the dependence onν completely cancels,
and also the error byCns partially cancels. When taking the amplitudes obtained from the
β-values closest toβc we obtainA+/A− = 0.560(10), which is consistent with the result
that was obtained using only data withβ 6= βc.

Let us now make a comparison with a few results of the literature. Estimates from
ε-expansion, field theoretic calculations inD = 3, high-temperature expansions and from
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Table 5. Results for the fit parameters of equation (24). An ‘f’ in the first column means that
the corresponding parameter was kept fixed to the quoted value.t and t ′ indicate the definition
of reduced temperature that was employed in the fit.

α Type A+ A− A+/A− Ens Cns

0.100 f t 11.194(56) 19.068(42) 0.5871(16) 0.330 37(1)−12.561(96)
t ′ 11.147(51) 19.132(41) 0.5826(15) 0.330 33(1)−12.544(88)

0.104 f t 10.374(52) 18.076(39) 0.5739(17) 0.330 34(1)−11.549(91)
t ′ 10.329(47) 18.140(38) 0.5694(15) 0.220 30(1)−11.545(85)

0.108 f t 9.625(49) 17.160(37) 0.5609(17) 0.330 31(1)−10.613(89)
t ′ 9.582(45) 17.224(36) 0.5563(15) 0.330 27(1)−10.601(88)

0.112 f t 8.940(47) 16.311(34) 0.5481(18) 0.330 28(1)−9.743(85)
t ′ 8.900(42) 16.375(33) 0.5435(15) 0.330 24(1)−9.733(78)

0.1115(37) t 9.03(63) 16.42(77) 0.550(12) 0.330 29(3)−9.86(80)
0.1047(48) t ′ 10.19(96) 17.97(1.17) 0.567(16) 0.330 30(4)−11.37(1.17)

Table 6. Estimates for the amplitudesA± based on the estimatesEns = 0.330 209(14),
Cns = 11.1(8) and ν = 0.6308(10). The estimates are obtained by solving equation (24)
with respect toA+ or A− a fixedβ, assuming hyperscalingα = 2− dν. The dominant sources
of error in the resulting amplitudes are the errors ofCns and ν. These errors are displayed in
the first and second parentheses respectively.

β A+ β A−

0.2204 9.86(41)(18) 0.2220 17.55(36)(46)
0.2205 9.85(40)(19) 0.2221 17.56(37)(39)
0.2206 9.85(40)(19) 0.2222 17.52(37)(37)
0.2207 9.84(39)(19) 0.2224 17.50(39)(36)
0.2208 9.82(39)(20) 0.2226 17.53(40)(35)
0.2209 9.82(39)(20) 0.2228 17.49(41)(34)
0.2210 9.82(38)(20)

experiments are given in [16]. For the readers convenience, we reproduce part of that
table in our table 7 and complete it with our present estimates. Apparently, our estimates
are larger than those cited in the table. However, our most accurate estimate MC, (c)
is consistent within error bars with the most recent result formε-expansion [16] and the
results from renormalized perturbation theory in three dimensions [18, 16]. We think that
the disagreement with the estimate based on high- and low-temperature expansion is most
likely due to an underestimation of the error in [1].

4. The universal constantfsξ
d

In this section we try to extract the numerical value offsξ
d in both phases of the model.

The values for the second moment correlation lengthξ2nd are taken from [19].
The estimates forfs at givenβ-values were obtained in the following way. We took

E−Ens−Cns(β−βc) as an approximation of the singular part of the energy. The constants
Ens and Cns were taken from the combined energy and specific heat fit at the critical
point. Then we computedfs as the integral overβ of the singular part of the energy.
We interpolated the singular part of the energy forβ-values not simulated with the scaling
ansatz, where we useν = 0.6308 and the amplitude was computed from the closestβ-value
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Table 7. Amplitude ratio estimates taken from the literature and from this work. The estimate
(a) and (b) are the fit results quoted in table 5, and discussed in section 2.2. Estimate (a) was
obtained by including also information from the data at the critical point, cf the discussion at the
end of section 2.2. Some estimates from experiments are 0.56(2) (binary mixtures), 0.49–0.53
(liquid–vapour systems), and 0.49–0.54 (magnetic systems), see [2].

Method A+/A− Reference Year

ε-expansion 0.524(10) [17] 85/86
ε-expansion 0.547(21) [16] 96
Field theoryD = 3 0.541(14) [18] 87
Field theoryD = 3 0.536(19) [16] 96
HT, LT series 0.523(9) [1] 89
MC, (a) 0.550(12) this work 97
MC, (b) 0.567(16) this work 97
MC, (c) 0.560(10) this work 97

Table 8. In the second column we give results of [19] for the second moment correlation length
ξ2nd. In the third column we give our estimate for the singular part of the free energy density
fs, while the fourth column gives the resulting estimate for the universal combinationfsξ

3
2nd.

β ξ2nd fs fsξ
3
2nd

0.219 31 8.760(5) 0.000 0524(22) 0.0352(15)
0.220 20 11.877(7) 0.000 0212(9) 0.0355(15)

0.223 11 6.093(9) 0.000 0377(9) 0.0085(2)
0.224 0 4.509(6) 0.000 0927(22) 0.0085(2)

simulated. The results are given in table 8.
In both phases we have results for only twoβ-values. Since the results of these two

β-values agree well we regard the resultsfsξ
3 = 0.0355(15) andfsξ

3 = 0.0085(2) for the
high- and low-temperature phase as reliable estimates for the critical limits.

Note that the result depends on the normalization chosen here, in particular we have
chosen to take the free energy per link rather than per site.

5. Conclusion

By careful scaling and finite-size scaling analysis of energy and specific heat data we
obtained estimates for various critical quantities. Taking into account the simplicity of the
approach, the results for the exponentsν andα are remarkably precise.
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